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A fundamental solution of the theory of shallow anisotropic shells is constructed, 
the principal part is extracted and some of its properties are studied. A proce- 
dure is indicated for constructing the Green’s function for a finite shell. The so- 
lution constructed is used in investigating the state of stress of an anisotropic shell 
in the neighborhood of the point of application of a concentrated force. A solu- 
tion is given for the problem of elastic equilibrium of an anisotropic shell rein- 
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forced by a periodic system of finite stiffeners. The problem is reduced to a sin- 

gular integro-differential equation in the jump in the tangential stress on the 

line of contact. The results of numerical computations are presented. 
The effects of forces concentrated at points and lines on an elastic shell have 

been studied by many authors (see the reviews [l - 31). Asymptotic formulas 
for the forces and moments in an isotropic shell loaded along the lines of prin- 

cipal curvature have been obtaind in [4, 5f. Transfer of the forces from the thin 

rib to the cylindrical isotropic shell was first studied in a rigorous formulation in [6]. 

1, Partuculrr 8oiutfonr in the theory of aniaotropic rhellc which 
correrpond to concentrated loads. Let us start from the equilibrium differ- 
ential equations in displacements for shallow anisotropic shells comprised of an odd num- 

ber of homogeneous anisotropic layers [7] 

(1.1) 

Here uj, pi are components of the displacement vector and of the external load,and 

L,j are known operators [7]. 

The operator B * = det [Lkj] is elliptic,of the form 

(1.2) 

Here Cjk, Dikt Ajk are associated with the elastic anisotropy parameters, a and fi 

are dimensionless Cartesian coordinates, Ri and R, are the principal radii of surface 

curvature. In (1.2), we set the coefficients of the first quadratic form of the surface A 

and B which are in (1. l),equal to Rs. 

It follows from (1.1) and (1.2) that the problem of the effect of a concentrated force 
is reduced to determining the fundamental solution of the operator L. 

Let us construct a fundamental solution E of the operator L which is T-periodic 

in 8 . We have 
(1.3) 

By virtue of the relationship 

6~ (p) =: 5 S(p-- klT) = -$ 2 e+Wa 
k=--m k=--m 

we seek the functions E (a, fi) in the form 

E (a, p) = -$- i ck (u.) eikw@ (I.41 

k--m 

Substituting (1.4) into (1.3) and equating coefficients of identical powers of eikos 
in the equation obtained, we are led to an infinite system of linear differential equations 
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to determine ~~(a). 

Let us seek c&z) in the class D’ of generalized functions of slow growth [8], Using 
the property of ~onvo~u~o~ of generalized functions, we can write 

( i aj (iho).’ Pj) + a, [8’4’ 
5-a 

- 2h (k~)2 6@) + h2 (h)%]} * ck = 6, (1.5) 

k=O, 1141, &=2,. . . 

Finding the inverse Fourier transform of both sides of (1.5), we obtain 

The Fourier ~ansform of the unction [n,(p)]- r is known if the ~rnag~~~ parts of 
the roots do not vanish. They can be found by using the residue theory, for example. 
If any of the imaginary parts of the roots vanish (we have a zero root of muitiplicity 

four for l&,(p) , for example), then the corresponding functions can be interpreted as 
the principal values or as the limit cases of roots with positive imaginary parts [8]. 

1, 
Considering the roots ~Jkf (k = -4- 1, 442 ,. . .) simple and I~(~~k)~ > 0 (v- 
2, 3, 41, we find after some maaipuiat%u 

(I.71 

C-k@)=Ck(-a)==), @>o, k=i,2,3,.., 

Ak (2) ez i ajZ+j + 
j=o v-1 

The fundamental solution E. corresponding to the homogeneous operator LO yields 
the principal part of the fundamental solution E . As above, we find 

gk @) 
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g-k(a)=gk(-u)=gk(a), a>‘& k=l,2,3,... 

3 4 

A (z) = 2 @-j = JJ (Z - z,) (Z - z,) 
ho v=1 

Formulas (1.8) have been obtained under the assumption that the roots A(z) are sim- 

ple and Im(z,,) > 0. 
Expressions for the displacements and strains in a shell due to the effect of a periodic 

system of concentrated forces Qk applied at the points a = tz1, fi = PI + nT (n = 

o,-l3,33.. .) along the a, fi axes and the internal normal to the shell surface’, 
respectively, are determined by the relationships 

uj (I%, /3) = Bkjyk (a - al, B - Bd yk = 
Q 

-LE. 
fR# 

k, i=i,2,3 (1.9) 

El =i 
RZ (~.hus)* %=&($fUs) 

Here the operator B,j is the cofactor of L,J in the matrix I&l. 
Let us write down the expression for the deflection at the zero point due to the effect 

of a force Qa at this same point, We have from (1.9) by using the property of the roots 
dVk) (see Sect. 2) 

where bj are coefficients of the operator 

defined above. The series in (1.10) converges absolutely. 

Represented in Fig. 1 are the results of cal- 
culating the deflection along lines a due to 

the effect of two diametrically opposite and 

equal radial forces for a spherical shell from 
AG-4.S fiberglass (El = 2.i-f04 MN/m2, 
E, = 1.6 -I@ MN/m2, G = 4.1.103 MN/m2, 

v2 = 0.07) for different values of the para- 
meter r = iO-‘I?, / h (h is the shell thick- 

ness) . 
The expression for the force and strainsin 

Fig. 1 
the case of loads along the lines is obtained 

by superposition of appropriate solutions of 

the concentrated forces. For example 

&,(a,p)=R~S~~j(al,p,) e~(u--a,,~-_P,)dl,rn=1,2 (1.11) 
19--r. 

Here pj(j = 1, 2, 3) is the intensity of the linear forces distributed over a line l 
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and directed along the j-th axis, respectively, a,(j) (a - c$, p - fir) is the shell 

strain referred to unit force at a point (a, b) due to the effect of a system of single 
concentrated forces Qj applied at the points (01r, pr f nT). 

2. Trrnrformrtion of the fundamental rolution (1.4). Let usestab- 
lish some of the properties of the roots zy and z,(k) of the polynomials A(z) and Ah(z) , 
respectively, 

In the case of an anisotropic shell we consider the roots of the polynomial A (z) to be 
simple and Im(z,) > 0 (Y = 1, 2, 3, 4). 

Property 1. If z, are simple and Im(z;) > 0, then starting with some k. at least, 
the roots of the polynomial Am are also simple. The estimate (e > 0 is an arbit- 
rarily small number) 

holds. 
1 2:“’ -zyI<k+? v=i,2,3,4 (2. I) 

Indeed, by virtue of (1.7) and (1.8), the polynomials Ak (a) and A (z) are represented 
in some closed neighborhood S of points L” as 

Al, (z) = A (z) + k-% (2) = A (2) + (?k (z) (2.2) 

A (4 = (z - zv) f (4, ;iy f (4 = A’ (zv) # 0 
Y 

Let m = min, I f (4 I.The neighborhood Scan be chosen so that m > O. Let us con- 

sider a neighborhood Sk of points zV of radius ’ k - *. Then, by virtue of (2.2), starting 
with some k 

1 'PI, (‘)I < + f 1 A (z) 1, ZEaS, 

Hence, by the Rouchet theorem, A (a) and Ak (z) = A (z) + qk(Z) have the identical 
number of roots in Sk. 

Property 2. Under the same assumptions relative to zy the identities 

0, q= 0,1,...,6 

are valid. 
1, q=7 

(2.3) 

Analogous identities also hold for z$“). Indeed, let us consider the integral 

1 

5 

zqdz 

27i- A (z) 

over the closed curve L enclosing all the roots of the polynomial A (I). Evaluating it 
initially by the Cauchy formula and then by using the residue theorem, we arrive at(2.3). 

In order to avoid divergence of the series in the forces and moments, let us proceed as 

follows. Using (1.7) and (1.8) we represent the fundamental solution E (a, fi) as 

E (a, B> = &,(a, B> + K (a, B) (2.4) 

i (Ck@)-gk@))e*k(op 
kE=-co 

By using (2.1) and (2.3) it can be proved that the series for K (cq p) in (2.4) and 
all its derivatives with respect to a, p is the seventh order inclusive, converge absolut- 

ely and uniformly in any closed neighborhood of zero. The general term of the series 
attenuates no more slowly than a kL-3 for the seventh order derivatives. 



By virtue of (1.8) and (2.3), for example, the relationships 

a’~O(‘, Pf~ ’ 
17-j 

&7-i@ = 7 *ctg -$ 
A (%I j=l,Z ,..,( 7 (2.5) 

hold for the principal part of the fundamental solution J%‘~ , 

8, Equflfbrfum of rn rnfrotropfc &hell tefnforced by rtfffener 
r f b 8. Let us consider a shell closed along 8 , which is reinforced along the congruent 
segments - I I 2 < a, \< I i 2, & = ST (s = 0, 1, l . ., o - 1) by thin stif- 

feners loaded at the ends CG = --I / 2 by identical longitudinal forces Q along the 

negative a-axis. Let us assume that the rib is connected continuously to the shell and 

is effective only under tension. 

Let us investigate the nature of the force distribution in the shell and in the rib. This 

problem has been solved in [6] in the case of an isotropic cylindrical shell. 
Let Q ((x) be the longitudinal tangential force transmitted from the rib to the shell. 

The strain compatibility condition for the rib and the shell on the contact line and the 

static condition for the stiffener rib are 
Ii2 

- q(a)da== 5 -qp 81 (a, 0) 
OL 

(3.1) 

l/2 

s 
q(a)&= --g- (3.2) 

-l/2 

Here &J,, F, are the elastic modulus and cross-sectional area of the rib. 

Substi~ting the expression for the strain a1 (a, 0) from (1.11) into f 3.1), using the 

representation (Z-4), (2.5) and introducing the change of variable a = 1x / 2, we arrive 

at a singular integral equation 

9, (5) = q (a) (3.3) 
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Here A, and Bj are coefficients of the operator 

In comb~ation with the additional condition (3.2), Eq. (3.3) determines the stress and 

strain in the shell and rib uniquely. 

The singular integral equation (3.3) can be regularized according to Carleman- Vekua 

by reduction to a Fredholm equation of the second kind. The arbitrary constant appear- 

ing during the regularization is determined by the relationship (3.2). 

However, it is apparently more expedient to use one of the procedures for direct solu- 
tion of singular equations [9- 111 for a numerical realization of the algorithm. The pro- 
cedure developed in [ll] ia applied below. 

Let us assume 
(3.4) 

Here ‘p. (2) is Holder-continuous in C-1, 11. 
Substituting (3.4) into (3.3) and intr~ucing the new variable 6 by means of x = 

COST, O<d\<n wereduceitto 

Having constructed a Lagrange interpolation polynomial for the desired function cpo (3) 

at the Chebyshev nodes 

and using the relationship [ll] 

tx 5 cos nzczz sin n0 
Yi- cos d - cos 6 =sine’ o<s<n, r&=1,2,... 

0 

7 

s F (x} ax 
_l -f/1 

=+ -j F(cosftv) 
“=I 

(the last formula is valid when F (2) is a polynomial of order <%z - 1), we derive 

the quadrature formulas 1 
I 

-%i f 
cos m 6, sin me (3, S) 

-1 VCl iTt==O 
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1 

&\‘P(W =+ 5 ‘p”O 
-n-1 cos mf), sin m8 

2 rn ++I 
cc v=1 -rn=l 

The expressions (3.6) afford a possibility of replacing (3.2) and (3.3) by a system of 

linear algebraic equations in the approximate values of the desired function at the nodal 

points, 
After some manipulation, this system becomes 

m=i,2,...,n (3.7) 
“=I “=I 

1 
a -- &jy 7nv - 3n [ 

6, + (- iYrn-“‘% + Ak(* 
2 

* ) 
m Y 

+ 

4, RcBult6 of the computrtiona, The computations were carried out on a 

M-222 digital computer. We assumed n = 20 and n = 30 in the system (3.7), which 

corresponds to partition of the interval into 20 and 36 Chebyshev nodes, respectively. 

The solutions agree to the accuracy of the fourth symbol. 
Represented in Fig. 2 are results of computing the tangential stress distribution q along 

a rib (Fig. 2a) and the dimensionless force in the stiffener (Fig, 2b) 

for a AG-4S fiberglass cylindrical ‘shell with 1 = L / R, = 1; 2 (L is the rib length) , 

0 = 6; 40 (o is the quantity of ribs, curve I corresponds to o = 40 for 2 = 1) and the 
relative stiffness U = E,R$ / E,F, = 2.102; 0 (the solid lines correspond to the value 

U = 2.102, and the dashes to u = 0). 

Fig. 2 

5. Conctructfon of the Green’r functfon for a finite ahell. Let 
us analyze a shallow anisotropic shell closed in 5 and finite in a. The solution of the 
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question about the equilibrium of such a shell subjected to a system of equal forces, T- 

periodic in B , applied at the points (011, fil + no’), n = 0, i, . . ., w - 4. reduces to 
constructing the fundamental solution EC of the operator L with given boundary condi- 
tions for u = 0, 1. 

For example, we have by virtue of (1.3) for the case of radial forces acting on a shell 

with moving hinge-supported edges 

+&T&) E*(a, p: al, B)=8@--al)8T Q3 -81) (5.1) 

Let us consider the construction of the Green’s function for this case in detail. Let us 
seek E+ as 

E* s f C, (a, al) eikw@+*) 

k=-ZW 
(5*2) 

Substituting (5.2) into (5.1) and equating coefficients of identical powers of @(B-83 
we obtain the following boundary value problem 

(5.3) 

3 
I d8-j 

4 

D1 = 21 dj(iko) 
da-j 

3=0 
da9_3, & = 2 bj (ikmf da4_‘, 

I?=0 

Da = 
( 
~+2(~k~)~~)~ 

Da = $(iko)) i ej(ik(,_#~+$ -&DI, k=O, fi, =f=2,... 

j=o da8-’ 

As before, considering the roots 2:‘) simple, let us write down the ~ndamen~l system 
of solutions of the operator L& 

Y v,k=” 
ih.oz$k)a 

’ yv+4, k = e 
ikcopa 

, v=l,2,3,4 

Then the solution of the boundary value problem (5.3) becomes [12] 

Ck (a, al) = 
Y& (a, ai) 

4 1 
ck (a, 92) = ck (a - al) 

‘X. faT a1) yl, k ta) . . . Ye, R (3) ’ ‘I (if,, h.1 u1 k& kf . - ’ u1 (.%J, k) 

Y, (a, al) = 
Ul (“J u1 &I, k) * - . u1 (ye k) , , 6 = ffa (y,, h.) uz (Y,, k). * * ua (Y,, k) 
. . . . . . . . . . . . . . . k . . . . . . . . . . * . . . . 

Ue @J ‘8 @I, k * * . u8 b,, k) Ua (Y, k) cr8 (Y&B 3 - * * rr8 b, 
l 
k) 



It hence follows that the function C,, (~1, a,) can be represented as the sum of the 
fundamental solution of the operator I+ constructed in Sect. 1 and the regular solution 
of equation Lk (y) taking account of the influence of the boundary conditions 

8 
ck (‘, '1) = Ck (a, al) + ~ Yj, k ~ 

j=1 k 

Here Aj,k is the cofactor of the element yj,k in the determinant YI, (a, a,). 

The solution for other boundary conditions is also constructed in an analogous manner. 
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